Shortcuts

Source code for fbgemm_gpu.split_table_batched_embeddings_ops_training

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict
# pyre-ignore-all-errors[56]

import contextlib
import enum
import functools
import logging
import math
import os
import uuid
from dataclasses import dataclass, field
from itertools import accumulate
from math import log2
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union

import torch  # usort:skip
from torch import nn, Tensor  # usort:skip

import fbgemm_gpu.split_embedding_codegen_lookup_invokers as invokers
from fbgemm_gpu.runtime_monitor import (
    AsyncSeriesTimer,
    TBEStatsReporter,
    TBEStatsReporterConfig,
)
from fbgemm_gpu.split_embedding_configs import EmbOptimType as OptimType, SparseType
from fbgemm_gpu.split_table_batched_embeddings_ops_common import (
    BoundsCheckMode,
    CacheAlgorithm,
    CacheState,
    construct_cache_state,
    EmbeddingLocation,
    MAX_PREFETCH_DEPTH,
    MultiPassPrefetchConfig,
    PoolingMode,
    RecordCacheMetrics,
    SplitState,
)

try:
    if torch.version.hip:
        torch.ops.load_library(
            "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_hip_training"
        )
    else:
        torch.ops.load_library(
            "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cuda_training"
        )
    torch.ops.load_library(
        "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cpu_training"
    )
except Exception:
    pass


try:
    try:
        from torch.compiler import is_compiling

        def is_torchdynamo_compiling() -> bool:  # type: ignore[misc]
            # at least one test fails if we import is_compiling as a different name
            return is_compiling()

    except Exception:
        # torch.compiler.is_compiling is not available in torch 1.10
        from torch._dynamo import is_compiling as is_torchdynamo_compiling
except Exception:

    def is_torchdynamo_compiling() -> bool:  # type: ignore[misc]
        return False


DEFAULT_ASSOC = 32 if torch.version.hip is None else 64
INT8_EMB_ROW_DIM_OFFSET = 8


class DoesNotHavePrefix(Exception):
    pass


class ComputeDevice(enum.IntEnum):
    CPU = 0
    CUDA = 1
    MTIA = 2


class WeightDecayMode(enum.IntEnum):
    NONE = 0
    L2 = 1
    DECOUPLE = 2
    COUNTER = 3
    COWCLIP = 4


class CounterWeightDecayMode(enum.IntEnum):
    NONE = 0
    L2 = 1
    DECOUPLE = 2


class LearningRateMode(enum.IntEnum):
    EQUAL = -1
    TAIL_ID_LR_INCREASE = 0
    TAIL_ID_LR_DECREASE = 1
    COUNTER_SGD = 2


class GradSumDecay(enum.IntEnum):
    NO_DECAY = -1
    CTR_DECAY = 0


@dataclass
class TailIdThreshold:
    val: float = 0
    is_ratio: bool = False


@dataclass
class CounterBasedRegularizationDefinition:
    counter_weight_decay_mode: CounterWeightDecayMode = CounterWeightDecayMode.NONE
    counter_halflife: int = -1
    adjustment_iter: int = -1
    adjustment_ub: float = 1.0
    learning_rate_mode: LearningRateMode = LearningRateMode.EQUAL
    grad_sum_decay: GradSumDecay = GradSumDecay.NO_DECAY
    tail_id_threshold: TailIdThreshold = field(default_factory=TailIdThreshold)
    max_counter_update_freq: int = 1000


@dataclass
class CowClipDefinition:
    counter_weight_decay_mode: CounterWeightDecayMode = CounterWeightDecayMode.NONE
    counter_halflife: int = -1
    weight_norm_coefficient: float = 0.0
    lower_bound: float = 0.0


# Keep in sync with fbgemm_gpu/include/fbgemm_gpu/split_embeddings_cache_cuda.cuh
class UVMCacheStatsIndex(enum.IntEnum):
    num_calls = 0
    num_requested_indices = 1
    num_unique_indices = 2
    num_unique_misses = 3
    num_conflict_unique_misses = 4
    num_conflict_misses = 5


def construct_split_state(
    embedding_specs: List[Tuple[int, int, EmbeddingLocation, ComputeDevice]],
    rowwise: bool,
    cacheable: bool,
    precision: SparseType = SparseType.FP32,
    int8_emb_row_dim_offset: int = INT8_EMB_ROW_DIM_OFFSET,
    placement: Optional[EmbeddingLocation] = None,
) -> SplitState:
    placements: List[EmbeddingLocation] = []
    offsets: List[int] = []
    dev_size: int = 0
    host_size: int = 0
    uvm_size: int = 0
    for num_embeddings, embedding_dim, location, _ in embedding_specs:
        assert (
            embedding_dim % 4 == 0
        ), f"embedding_dim must be a multiple of 4, but got {embedding_dim}"
        if precision == SparseType.INT8:
            embedding_dim += int8_emb_row_dim_offset
        state_size = num_embeddings * embedding_dim if not rowwise else num_embeddings
        location = placement if placement is not None else location
        if location == EmbeddingLocation.HOST:
            placements.append(EmbeddingLocation.HOST)
            offsets.append(host_size)
            host_size += state_size
        # If table is on device, then opimtizer is on device.
        # If table is managed, then if optimizer state is rowwise, optimizer is on device, otherwise optimizer is managed.
        elif location == EmbeddingLocation.DEVICE or rowwise:
            placements.append(EmbeddingLocation.DEVICE)
            offsets.append(dev_size)
            dev_size += state_size
        else:
            if cacheable and location == EmbeddingLocation.MANAGED_CACHING:
                placements.append(EmbeddingLocation.MANAGED_CACHING)
            else:
                placements.append(EmbeddingLocation.MANAGED)
            offsets.append(uvm_size)
            uvm_size += state_size
    assert len(placements) == len(offsets)
    return SplitState(
        dev_size=dev_size,
        host_size=host_size,
        uvm_size=uvm_size,
        placements=placements,
        offsets=offsets,
    )


def apply_split_helper(
    persistent_state_fn: Callable[[str, Tensor], None],
    set_attr_fn: Callable[
        [str, Union[Tensor, List[int], List[EmbeddingLocation]]], None
    ],
    current_device: torch.device,
    use_cpu: bool,
    feature_table_map: List[int],
    split: SplitState,
    prefix: str,
    dtype: Type[torch.dtype],
    enforce_hbm: bool = False,
    make_dev_param: bool = False,
    dev_reshape: Optional[Tuple[int, ...]] = None,
    uvm_tensors_log: Optional[List[str]] = None,
) -> None:
    set_attr_fn(f"{prefix}_physical_placements", split.placements)
    set_attr_fn(f"{prefix}_physical_offsets", split.offsets)

    offsets = [split.offsets[t] for t in feature_table_map]
    placements = [split.placements[t] for t in feature_table_map]
    persistent_state_fn(
        f"{prefix}_offsets",
        torch.tensor(offsets, device=current_device, dtype=torch.int64),
    )
    persistent_state_fn(
        f"{prefix}_placements",
        torch.tensor(placements, device=current_device, dtype=torch.int32),
    )
    if split.dev_size > 0:
        dev_buffer = torch.zeros(
            split.dev_size,
            device=current_device,
            # pyre-fixme[6]
            dtype=dtype,
        )
        dev_buffer = (
            dev_buffer.view(*dev_reshape) if dev_reshape is not None else dev_buffer
        )
    else:
        # pyre-fixme[6]
        dev_buffer = torch.empty(0, device=current_device, dtype=dtype)
    if make_dev_param:
        set_attr_fn(f"{prefix}_dev", nn.Parameter(dev_buffer))
    else:
        persistent_state_fn(f"{prefix}_dev", dev_buffer)
    if split.host_size > 0:
        if dtype == torch.uint8:
            persistent_state_fn(
                f"{prefix}_host",
                torch.zeros(
                    split.host_size,
                    device=current_device,
                    # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]` for
                    #  3rd param but got `Type[Type[torch._dtype]]`.
                    dtype=dtype,
                ),
            )
        else:
            set_attr_fn(
                f"{prefix}_host",
                nn.Parameter(
                    torch.zeros(
                        split.host_size,
                        device=current_device,
                        # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]`
                        #  for 3rd param but got `Type[Type[torch._dtype]]`.
                        dtype=dtype,
                    )
                ),
            )
        if uvm_tensors_log is not None:
            uvm_tensors_log.append(f"{prefix}_host")
    else:
        persistent_state_fn(
            f"{prefix}_host",
            # pyre-fixme[6]: For 3rd param expected `dtype` but got `Type[dtype]`.
            torch.empty(0, device=current_device, dtype=dtype),
        )
    if split.uvm_size > 0:
        assert not use_cpu
        if enforce_hbm:
            logging.info("Enforce hbm for the cache location")
            persistent_state_fn(
                f"{prefix}_uvm",
                torch.zeros(
                    split.uvm_size,
                    device=current_device,
                    # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]` for
                    #  3rd param but got `Type[Type[torch._dtype]]`.
                    dtype=dtype,
                ),
            )
        else:
            persistent_state_fn(
                f"{prefix}_uvm",
                torch.zeros(
                    split.uvm_size,
                    out=torch.ops.fbgemm.new_managed_tensor(
                        # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]`
                        #  for 3rd param but got `Type[Type[torch._dtype]]`.
                        torch.zeros(1, device=current_device, dtype=dtype),
                        [split.uvm_size],
                    ),
                ),
            )
            if uvm_tensors_log is not None:
                uvm_tensors_log.append(f"{prefix}_uvm")
    else:
        persistent_state_fn(
            f"{prefix}_uvm",
            # pyre-fixme[6]: For 3rd param expected `dtype` but got `Type[dtype]`.
            torch.empty(0, device=current_device, dtype=dtype),
        )


def generate_vbe_metadata(
    offsets: Tensor,
    batch_size_per_feature_per_rank: Optional[List[List[int]]],
    optimizer: OptimType,
    pooling_mode: PoolingMode,
    feature_dims: Tensor,
    device: torch.device,
) -> invokers.lookup_args.VBEMetadata:
    """
    Generate VBE metadata based on batch_size_per_feature_per_rank.
    Metadata includes:
        1) B_offsets - A tensor that contains batch size offsets for each
                        feature
        2) output_offsets_feature_rank - A tensor that contains output
                                            offsets for each feature
        3) B_offsets_per_rank_per_feature - A tensor that contains batch
                                            size offsets for each feature
                                            and rank
        4) max_B - The maximum batch size for all features
        5) max_B_feature_rank - The maximum batch size for all ranks and
                                features
        6) output_size - The output size (number of elements)
    """
    if batch_size_per_feature_per_rank is not None:
        assert (
            optimizer == OptimType.EXACT_ROWWISE_ADAGRAD
            or optimizer == OptimType.EXACT_SGD
            or optimizer == OptimType.NONE
        ), "Variable batch size TBE support is enabled for OptimType.EXACT_ROWWISE_ADAGRAD only"
        assert (
            pooling_mode != PoolingMode.NONE
        ), "Variable batch size TBE support is not enabled for PoolingMode.NONE"
        # TODO: Add input check
        zero_tensor = torch.zeros(1, device="cpu", dtype=torch.int32)

        # Create B offsets
        total_batch_size_per_feature = torch.tensor(
            batch_size_per_feature_per_rank, dtype=torch.int32, device="cpu"
        ).sum(dim=1)

        max_B = total_batch_size_per_feature.max().item()
        if not torch.jit.is_scripting() and is_torchdynamo_compiling():
            torch._check_is_size(max_B)
            torch._check(max_B < offsets.numel())

        Bs = torch.concat([zero_tensor, total_batch_size_per_feature])
        B_offsets = Bs.cumsum(dim=0).to(torch.int)

        # Create output offsets
        B_feature_rank = torch.tensor(
            batch_size_per_feature_per_rank,
            device="cpu",
            dtype=torch.int64,
        )
        max_B_feature_rank = B_feature_rank.max().item()
        if not torch.jit.is_scripting() and is_torchdynamo_compiling():
            torch._check_is_size(max_B_feature_rank)
            torch._check(max_B_feature_rank <= offsets.size(0))
        # D->H only once
        feature_dims = feature_dims.cpu()
        output_sizes_feature_rank = B_feature_rank.transpose(0, 1) * feature_dims.view(
            1, -1
        )
        output_offsets_feature_rank = torch.concat(
            [
                zero_tensor.to(torch.int64),
                output_sizes_feature_rank.flatten().cumsum(dim=0),
            ]
        )
        output_size = output_offsets_feature_rank[-1].item()
        if not torch.jit.is_scripting() and is_torchdynamo_compiling():
            torch._check_is_size(output_size)

        # TODO: Support INT8 output
        # B_offsets_rank_per_feature is for rank and (b, t) mapping
        B_offsets_rank_per_feature = (
            torch.tensor(
                [
                    [0] + batch_size_per_feature
                    for batch_size_per_feature in batch_size_per_feature_per_rank
                ],
                device="cpu",
                dtype=torch.int32,
            )
            .cumsum(dim=1)
            .to(torch.int)
        )

        B_offsets = B_offsets.to(device, non_blocking=True)
        output_offsets_feature_rank = output_offsets_feature_rank.to(
            device, non_blocking=True
        )
        B_offsets_rank_per_feature = B_offsets_rank_per_feature.to(
            device, non_blocking=True
        )

        # TODO: Use int32 for B_offsets and int64 for output_offsets_feature_rank
        vbe_metadata = invokers.lookup_args.VBEMetadata(
            B_offsets=B_offsets,
            output_offsets_feature_rank=output_offsets_feature_rank,
            B_offsets_rank_per_feature=B_offsets_rank_per_feature,
            # pyre-ignore
            max_B=max_B,
            # pyre-ignore
            max_B_feature_rank=max_B_feature_rank,
            # pyre-ignore
            output_size=output_size,
        )
    else:
        vbe_metadata = invokers.lookup_args.VBEMetadata(
            B_offsets=None,
            output_offsets_feature_rank=None,
            B_offsets_rank_per_feature=None,
            max_B=-1,
            max_B_feature_rank=-1,
            output_size=-1,
        )
    return vbe_metadata


# pyre-fixme[13]: Attribute `uvm_cache_stats` is never initialized.
# pyre-fixme[13]: Attribute `local_uvm_cache_stats` is never initialized.
[docs]class SplitTableBatchedEmbeddingBagsCodegen(nn.Module): """ Table Batched Embedding (TBE) operator. Please see docs/table_batched_embedding_ops.py for the extended documentation. Multiple sparse features can share one embedding table. 'feature_table_map' specifies the feature-table mapping. T: number of logical tables T_: number of physical tables T >= T_ For supported optimizer hyperparams, see inline comments below """ embedding_specs: List[Tuple[int, int, EmbeddingLocation, ComputeDevice]] optimizer_args: invokers.lookup_args.OptimizerArgs lxu_cache_locations_list: List[Tensor] lxu_cache_locations_empty: Tensor timesteps_prefetched: List[int] record_cache_metrics: RecordCacheMetrics uvm_cache_stats: torch.Tensor local_uvm_cache_stats: torch.Tensor uuid: str last_uvm_cache_print_state: torch.Tensor _vbe_B_offsets: Optional[torch.Tensor] _vbe_max_B: int def __init__( # noqa C901 self, embedding_specs: List[ Tuple[int, int, EmbeddingLocation, ComputeDevice] ], # tuple of (rows, dims, placements, compute_devices) feature_table_map: Optional[List[int]] = None, # [T] cache_algorithm: CacheAlgorithm = CacheAlgorithm.LRU, cache_load_factor: float = 0.2, cache_sets: int = 0, cache_reserved_memory: float = 0.0, cache_precision: SparseType = SparseType.FP32, weights_precision: SparseType = SparseType.FP32, output_dtype: SparseType = SparseType.FP32, enforce_hbm: bool = False, # place all weights/momentums in HBM when using cache optimizer: OptimType = OptimType.EXACT_SGD, record_cache_metrics: Optional[RecordCacheMetrics] = None, gather_uvm_cache_stats: Optional[bool] = False, # General Optimizer args stochastic_rounding: bool = True, gradient_clipping: bool = False, max_gradient: float = 1.0, max_norm: float = 0.0, learning_rate: float = 0.01, # used by EXACT_ADAGRAD, EXACT_ROWWISE_ADAGRAD, LAMB, and ADAM only # NOTE that default is different from nn.optim.Adagrad default of 1e-10 eps: float = 1.0e-8, momentum: float = 0.9, # used by LARS-SGD # EXACT_ADAGRAD, SGD, EXACT_SGD do not support weight decay # LAMB, ADAM, PARTIAL_ROWWISE_ADAM, PARTIAL_ROWWISE_LAMB, LARS_SGD support decoupled weight decay # EXACT_ROWWISE_ADAGRAD support both L2 and decoupled weight decay (via weight_decay_mode) weight_decay: float = 0.0, weight_decay_mode: WeightDecayMode = WeightDecayMode.NONE, eta: float = 0.001, # used by LARS-SGD, beta1: float = 0.9, # used by LAMB and ADAM beta2: float = 0.999, # used by LAMB and ADAM counter_based_regularization: Optional[ CounterBasedRegularizationDefinition ] = None, # used by Rowwise Adagrad cowclip_regularization: Optional[ CowClipDefinition ] = None, # used by Rowwise Adagrad pooling_mode: PoolingMode = PoolingMode.SUM, device: Optional[Union[str, int, torch.device]] = None, bounds_check_mode: BoundsCheckMode = BoundsCheckMode.WARNING, uvm_non_rowwise_momentum: bool = False, # place non-rowwise momentum on UVM use_experimental_tbe: bool = False, # set to True to use TBE v2 (only support NVIDIA GPUs) # set to True to enable prefetch pipeline, currently only supports LRU cache policy. # If a separate stream is used for prefetch, the optional forward_stream arg of prefetch function # should be set. prefetch_pipeline: bool = False, stats_reporter_config: Optional[TBEStatsReporterConfig] = None, # Embedding table names that are contained in this TBE. table_names: Optional[List[str]] = None, optimizer_state_dtypes: Optional[Dict[str, SparseType]] = None, multipass_prefetch_config: Optional[MultiPassPrefetchConfig] = None, ) -> None: super(SplitTableBatchedEmbeddingBagsCodegen, self).__init__() self.uuid = str(uuid.uuid4()) self.pooling_mode = pooling_mode self.bounds_check_mode_int: int = bounds_check_mode.value self.weights_precision = weights_precision self.output_dtype: int = output_dtype.as_int() assert ( not prefetch_pipeline or cache_algorithm == CacheAlgorithm.LRU ), "Only LRU cache policy supports prefetch_pipeline." self.prefetch_pipeline: bool = prefetch_pipeline self.lock_cache_line: bool = self.prefetch_pipeline self.use_uniq_cache_locations_bwd: bool = self.prefetch_pipeline self.multipass_prefetch_config: Optional[MultiPassPrefetchConfig] = ( multipass_prefetch_config ) if record_cache_metrics is not None: self.record_cache_metrics = record_cache_metrics else: self.record_cache_metrics = RecordCacheMetrics(False, False) if multipass_prefetch_config: assert ( prefetch_pipeline ), "Multipass prefetch makes no sense in non-prefetch mode." assert ( cache_algorithm == CacheAlgorithm.LRU ), "Multipass prefetch is only supported in LRU cache." assert ( multipass_prefetch_config.num_passes > 0 ), f"num_passes must be positive, get {multipass_prefetch_config.num_passes}" assert ( multipass_prefetch_config.min_splitable_pass_size > 0 ), f"min_splitable_pass_size must be positive, get {multipass_prefetch_config.min_splitable_pass_size}" assert ( not self.record_cache_metrics.record_cache_miss_counter and not self.record_cache_metrics.record_tablewise_cache_miss ), "Unique cache miss counters are not accurate in multipass prefetch and therefore not supported" self.embedding_specs = embedding_specs (rows, dims, locations, compute_devices) = zip(*embedding_specs) T_ = len(self.embedding_specs) self.dims: List[int] = dims assert T_ > 0 # mixed D is not supported by no bag kernels mixed_D = False D = self.dims[0] for d in self.dims: if d != D: mixed_D = True break if mixed_D: assert ( self.pooling_mode != PoolingMode.NONE ), "Mixed dimension tables only supported for pooling tables." assert all( cd == compute_devices[0] for cd in compute_devices ), "Heterogenous compute_devices are NOT supported!" # Split TBE has different function schemas for CUDA and CPU. # For MTIA device type, it uses the CPU one. self.use_cpu: bool = ( compute_devices[0] == ComputeDevice.CPU or compute_devices[0] == ComputeDevice.MTIA ) assert not self.use_cpu or all( loc == EmbeddingLocation.HOST for loc in locations ), "ComputeDevice.CPU is only for EmbeddingLocation.HOST!" assert self.use_cpu or all( loc != EmbeddingLocation.HOST for loc in locations ), "EmbeddingLocation.HOST doesn't work for CUDA device!" if self.use_cpu or self.pooling_mode == PoolingMode.NONE: assert output_dtype in [ SparseType.FP32, SparseType.FP16, SparseType.BF16, ], "Fused pooled embedding quantization only supported for cuda." if optimizer == OptimType.NONE: assert all( loc == EmbeddingLocation.DEVICE for loc in locations ), "OptimType.NONE supports only EmbeddingLocation.DEVICE" assert all( cd == ComputeDevice.CUDA for cd in compute_devices ), "OptimType.NONE supports only ComputeDevice.CUDA" assert ( not mixed_D ), "OptimType.NONE does not support mixed embedding dimension" if device is None: self.current_device: torch.device = ( torch.device("cpu") if self.use_cpu else torch.device(torch.cuda.current_device()) ) elif isinstance(device, torch.device): self.current_device = device else: self.current_device = torch.device(device) # add placeholder require_grad param tensor to enable autograd with int8 weights self.placeholder_autograd_tensor = nn.Parameter( torch.zeros(0, device=self.current_device, dtype=torch.float) ) self.gather_uvm_cache_stats = gather_uvm_cache_stats # Define the size of uvm cache stats as class variable # to make it work with torch jit script. self.uvm_cache_stats_size = 6 # 0: N_calls, 1: N_requested_indices, 2: N_unique_indices, 3: N_unique_misses, # 4: N_conflict_unique_misses, 5: N_conflict_misses # Reporter to collect runtime performance stats bottom-up. Reporter may # do aggregation across TBEs and publish results per training batch. # Example of stats include UVM cache hit rate, table I/O size, etc. self.stats_reporter: Optional[TBEStatsReporter] = ( stats_reporter_config.create_reporter() if stats_reporter_config else None ) self._uvm_tensors_log: List[str] = [] self.bwd_wait_prefetch_timer: Optional[AsyncSeriesTimer] = None if self.stats_reporter: # When stats_reporter is present, we set up async series timer to # measure the GPU time per tracked event accordingly. Each of them # is attached to custom callback report function to report collected # duration with the corresponding event name. self.bwd_wait_prefetch_timer = AsyncSeriesTimer( functools.partial( SplitTableBatchedEmbeddingBagsCodegen._report_wait_prefetch_time, self, event_name="bwd_wait_for_prefetch", ) ) self.int8_emb_row_dim_offset: int = INT8_EMB_ROW_DIM_OFFSET self.feature_table_map: List[int] = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(self.feature_table_map) assert T_ <= T table_has_feature = [False] * T_ for t in self.feature_table_map: table_has_feature[t] = True assert all(table_has_feature), "Each table must have at least one feature!" feature_dims = [dims[t] for t in self.feature_table_map] D_offsets = [0] + list(accumulate(feature_dims)) self.total_D: int = D_offsets[-1] self.max_D: int = max(dims) cached_dims = [ embedding_spec[1] for embedding_spec in embedding_specs if embedding_spec[2] == EmbeddingLocation.MANAGED_CACHING ] self.max_D_cache: int = max(cached_dims) if len(cached_dims) > 0 else 0 self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) hash_size_cumsum = [0] + list(accumulate(rows)) self.total_hash_size: int = int(hash_size_cumsum[-1]) if self.total_hash_size == 0: self.total_hash_size_bits: int = 0 else: self.total_hash_size_bits: int = int(log2(float(self.total_hash_size)) + 1) # The last element is to easily access # of rows of each table by # hash_size_cumsum[t + 1] - hash_size_cumsum[t] hash_size_cumsum = [hash_size_cumsum[t] for t in self.feature_table_map] + [ self.total_hash_size ] self.register_buffer( "hash_size_cumsum", torch.tensor( hash_size_cumsum, device=self.current_device, dtype=torch.int64 ), ) self.register_buffer( "rows_per_table", torch.tensor( [rows[t] for t in self.feature_table_map], device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "bounds_check_warning", torch.tensor([0], device=self.current_device, dtype=torch.int64), ) # Required for VBE self.register_buffer( "feature_dims", torch.tensor(feature_dims, device="cpu", dtype=torch.int64), ) # A flag for indicating whether all embedding tables are placed in the # same locations self.use_homogeneous_placements: bool = all( loc == locations[0] for loc in locations ) weight_split = construct_split_state( embedding_specs, rowwise=False, cacheable=True, precision=weights_precision, ) table_embedding_dtype = weights_precision.as_dtype() self._apply_split( weight_split, prefix="weights", # pyre-fixme[6]: For 3rd param expected `Type[Type[_dtype]]` but got # `Type[_dtype]`. dtype=table_embedding_dtype, enforce_hbm=enforce_hbm, make_dev_param=optimizer == OptimType.NONE, dev_reshape=(-1, self.max_D) if optimizer == OptimType.NONE else None, ) assert optimizer not in ( OptimType.SGD, OptimType.ROWWISE_ADAGRAD, ), f"Optimizer {optimizer} is deprecated in the CPU + GPU modes." if self.use_cpu: # Construct optimizer states assert optimizer in ( OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_SGD, ), f"Optimizer {optimizer} is not supported in CPU mode." else: assert optimizer in ( OptimType.ADAM, OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_SGD, OptimType.LAMB, OptimType.LARS_SGD, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB, OptimType.NONE, ), f"Optimizer {optimizer} is not supported." self.stochastic_rounding = stochastic_rounding self.optimizer = optimizer self.weight_decay_mode = weight_decay_mode if (weight_decay_mode == WeightDecayMode.COUNTER) != ( counter_based_regularization is not None ): raise AssertionError( "Need to set weight_decay_mode=WeightDecayMode.COUNTER together with valid counter_based_regularization" ) if (weight_decay_mode == WeightDecayMode.COWCLIP) != ( cowclip_regularization is not None ): raise AssertionError( "Need to set weight_decay_mode=WeightDecayMode.COWCLIP together with valid cowclip_regularization" ) self._used_rowwise_adagrad_with_counter: bool = ( optimizer == OptimType.EXACT_ROWWISE_ADAGRAD and ( weight_decay_mode in (WeightDecayMode.COUNTER, WeightDecayMode.COWCLIP) ) ) if counter_based_regularization is None: counter_based_regularization = CounterBasedRegularizationDefinition() if cowclip_regularization is None: cowclip_regularization = CowClipDefinition() self._max_counter_update_freq: int = -1 # Extract parameters from CounterBasedRegularizationDefinition or CowClipDefinition # which are passed as entries for OptimizerArgs if self._used_rowwise_adagrad_with_counter: if self.weight_decay_mode == WeightDecayMode.COUNTER: self._max_counter_update_freq = ( counter_based_regularization.max_counter_update_freq ) opt_arg_weight_decay_mode = ( counter_based_regularization.counter_weight_decay_mode ) counter_halflife = counter_based_regularization.counter_halflife else: opt_arg_weight_decay_mode = ( cowclip_regularization.counter_weight_decay_mode ) counter_halflife = cowclip_regularization.counter_halflife else: opt_arg_weight_decay_mode = weight_decay_mode # Default: -1, no decay applied, as a placeholder for OptimizerArgs # which should not be effective when CounterBasedRegularizationDefinition # and CowClipDefinition are not used counter_halflife = -1 self.optimizer_args = invokers.lookup_args.OptimizerArgs( stochastic_rounding=stochastic_rounding, gradient_clipping=gradient_clipping, max_gradient=max_gradient, max_norm=max_norm, learning_rate=learning_rate, eps=eps, beta1=beta1, beta2=beta2, weight_decay=weight_decay, weight_decay_mode=opt_arg_weight_decay_mode.value, eta=eta, momentum=momentum, counter_halflife=counter_halflife, adjustment_iter=counter_based_regularization.adjustment_iter, adjustment_ub=counter_based_regularization.adjustment_ub, learning_rate_mode=counter_based_regularization.learning_rate_mode.value, grad_sum_decay=counter_based_regularization.grad_sum_decay.value, tail_id_threshold=counter_based_regularization.tail_id_threshold.val, is_tail_id_thresh_ratio=int( counter_based_regularization.tail_id_threshold.is_ratio ), total_hash_size=self.total_hash_size, weight_norm_coefficient=cowclip_regularization.weight_norm_coefficient, lower_bound=cowclip_regularization.lower_bound, regularization_mode=weight_decay_mode.value, ) if optimizer != OptimType.NONE: assert ( optimizer == OptimType.PARTIAL_ROWWISE_ADAM or optimizer_state_dtypes is None ), "optimizer_state_dtypes option is only supported for OptimType.PARTIAL_ROWWISE_ADAM" if optimizer in (OptimType.EXACT_SGD,): # NOTE: make TorchScript work! self._register_nonpersistent_buffers("momentum1") else: momentum1_dtype = ( torch.float32 if ( optimizer_state_dtypes is None or "momentum1" not in optimizer_state_dtypes ) else optimizer_state_dtypes["momentum1"].as_dtype() ) rowwise = optimizer in [ OptimType.EXACT_ROWWISE_ADAGRAD, ] self._apply_split( construct_split_state( embedding_specs, rowwise=rowwise, cacheable=False, placement=( EmbeddingLocation.MANAGED if ((not rowwise) and uvm_non_rowwise_momentum) else None ), ), prefix="momentum1", # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=momentum1_dtype, enforce_hbm=enforce_hbm, ) if optimizer in ( OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, ): rowwise = optimizer in ( OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB, ) momentum2_dtype = ( torch.float32 if ( optimizer_state_dtypes is None or "momentum2" not in optimizer_state_dtypes ) else optimizer_state_dtypes["momentum2"].as_dtype() ) self._apply_split( construct_split_state( embedding_specs, rowwise=rowwise, cacheable=False, placement=( EmbeddingLocation.MANAGED if ((not rowwise) and uvm_non_rowwise_momentum) else None ), ), prefix="momentum2", # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=momentum2_dtype, ) else: # NOTE: make TorchScript work! self._register_nonpersistent_buffers("momentum2") if self._used_rowwise_adagrad_with_counter: self._apply_split( construct_split_state( embedding_specs, rowwise=True, cacheable=False, ), prefix="prev_iter", # TODO: ideally we should use int64 to track iter but it failed to compile. # It may be related to low precision training code. Currently using float32 # as a workaround while investigating the issue. # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=torch.float32, ) self._apply_split( construct_split_state( embedding_specs, rowwise=True, cacheable=False, ), prefix="row_counter", # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=torch.float32, ) self.register_buffer( "max_counter", torch.tensor([1], dtype=torch.float32) ) else: self._register_nonpersistent_buffers("prev_iter") self._register_nonpersistent_buffers("row_counter") self.register_buffer( "max_counter", torch.ones(1, dtype=torch.float32, device=self.current_device), persistent=False, ) if optimizer in ( OptimType.ADAM, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB, ): self.register_buffer( "iter", torch.zeros(1, dtype=torch.int64, device=self.current_device), ) else: self.register_buffer( "iter", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) cache_state = construct_cache_state(rows, locations, self.feature_table_map) # Add table-wise cache miss counter if self.record_cache_metrics.record_tablewise_cache_miss: num_tables = len(cache_state.cache_hash_size_cumsum) - 1 self.register_buffer( "table_wise_cache_miss", torch.zeros( num_tables, device=self.current_device, dtype=torch.int64, ), ) # NOTE: make TorchScript work! else: self.register_buffer( "table_wise_cache_miss", torch.zeros( 0, device=self.current_device, dtype=torch.int64, ), ) if cache_precision == SparseType.FP32: cache_embedding_dtype = torch.float32 elif cache_precision == SparseType.FP16: cache_embedding_dtype = torch.float16 else: raise AssertionError(f"cache_precision {cache_precision} not supported!") self._apply_cache_state( cache_state, cache_algorithm, cache_load_factor, cache_sets, cache_reserved_memory, dtype=cache_embedding_dtype, ) self.log(f"Contents: {table_names}") self.log( f"Using fused {optimizer} with optimizer_args={self.optimizer_args if optimizer != OptimType.NONE else None}" ) self.log( f"Using rowwise_adagrad_with_counter={self._used_rowwise_adagrad_with_counter}" ) self.step = 0 self.last_reported_step = 0 self.last_reported_uvm_stats: List[float] = [] # Check whether to use TBE v2 is_experimental = False fbgemm_exp_tbe = os.environ.get("FBGEMM_EXPERIMENTAL_TBE") if use_experimental_tbe: is_experimental = True self.log("use_experimental_tbe is set to True; Use experimental TBE: True") elif fbgemm_exp_tbe is not None: is_experimental = int(fbgemm_exp_tbe) == 1 self.log( f"FBGEMM_EXPERIMENTAL_TBE is set to {fbgemm_exp_tbe}; " f"Use experimental TBE: {is_experimental}" ) self.is_experimental: bool = is_experimental @torch.jit.ignore def log(self, msg: str) -> None: """Log with TBE id prefix to distinguish between multiple TBE instances per process.""" logging.info(f"[TBE={self.uuid}] {msg}") def _register_nonpersistent_buffers(self, prefix: str) -> None: # NOTE: make TorchScript work! self.register_buffer( f"{prefix}_dev", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_host", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_uvm", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_placements", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_offsets", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) @staticmethod def get_prefetch_passes( multipass_prefetch_config: Optional[MultiPassPrefetchConfig], input_tensor: Tensor, output_tensor: Tensor, ) -> List[Tuple[Tensor, Tensor, int]]: """ Given input (the indices to forward), return the segmentation for each pass in the format of (input[start_idx:end_idx], output[start_idx:end_idx], start_idx). Caller should guarantee input and output are having the size on dimension 0 The returned segments are guaranteed to completely and non-overlappingly cover the input tensor. In non-multipass-prefetch mode, it returns the input/output tensor itself. """ if multipass_prefetch_config is None: return [(input_tensor, output_tensor, 0)] mpp_config: MultiPassPrefetchConfig = multipass_prefetch_config N = input_tensor.size(0) if N <= mpp_config.num_passes or mpp_config.num_passes == 1: # One row per pass, just don't split return [(input_tensor, output_tensor, 0)] pass_size: int = max( (N + mpp_config.num_passes - 1) // mpp_config.num_passes, mpp_config.min_splitable_pass_size, ) return list( zip( torch.split(input_tensor, pass_size), torch.split(output_tensor, pass_size), range(0, N, pass_size), ) ) def get_states(self, prefix: str) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: if not hasattr(self, f"{prefix}_physical_placements"): raise DoesNotHavePrefix() dev_param = getattr(self, f"{prefix}_dev") host_param = getattr(self, f"{prefix}_host") uvm_param = getattr(self, f"{prefix}_uvm") placements = getattr(self, f"{prefix}_physical_placements") offsets = getattr(self, f"{prefix}_physical_offsets") return ( dev_param, host_param, uvm_param, torch.tensor(placements, dtype=torch.int32), torch.tensor(offsets, dtype=torch.int64), ) def get_all_states(self) -> List[Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]]: all_states = [] for prefix in ["weights", "momentum1", "momentum2", "prev_iter", "row_counter"]: try: all_states.append(self.get_states(prefix)) except DoesNotHavePrefix: pass return all_states @torch.jit.export def get_cache_miss_counter(self) -> Tensor: # cache_miss_counter contains two items: # The first one is cache_miss_forward_count which records the total number of forwards which has at least one cache miss # The second one is the unique_cache_miss_count which records to total number of unique (dedup) cache misses return self.cache_miss_counter @torch.jit.export def get_table_wise_cache_miss(self) -> Tensor: # table_wise_cache_miss contains all the cache miss count for each table in this embedding table object: return self.table_wise_cache_miss # The callback function for AsyncTimer to record duration to different event def _report_wait_prefetch_time( self, it_step: int, dur_ms: float, event_name: str, ) -> None: assert ( self.stats_reporter ), "We should not be here. AsyncTimer only happens with reporter present." self.stats_reporter.report_duration(it_step, event_name, dur_ms) @torch.jit.ignore def _report_tbe_mem_usage( self, ) -> None: if self.stats_reporter is None: return stats_reporter: TBEStatsReporter = self.stats_reporter if not stats_reporter.should_report(self.step): return total_mem_usage = sum( param.numel() * param.element_size() for param in self.parameters() ) + sum(buffer.numel() * buffer.element_size() for buffer in self.buffers()) if self.use_cpu: total_hbm_usage = 0 total_uvm_usage = total_mem_usage else: # hbm usage is total usage minus uvm usage total_uvm_usage = sum( getattr(self, tensor_name).numel() * getattr(self, tensor_name).element_size() for tensor_name in self._uvm_tensors_log if hasattr(self, tensor_name) ) total_hbm_usage = total_mem_usage - total_uvm_usage stats_reporter.report_data_amount( iteration_step=self.step, event_name="tbe.total_hbm_usage", data_bytes=total_hbm_usage, ) stats_reporter.report_data_amount( iteration_step=self.step, event_name="tbe.total_uvm_usage", data_bytes=total_uvm_usage, ) @torch.jit.ignore def _report_io_size_count(self, event: str, data: Tensor) -> Tensor: if self.stats_reporter is None: return data stats_reporter: TBEStatsReporter = self.stats_reporter if stats_reporter.should_report(self.step): stats_reporter.report_data_amount( iteration_step=self.step, event_name=f"tbe.{event}_size", data_bytes=data.element_size() * data.numel(), ) stats_reporter.report_data_amount( iteration_step=self.step, event_name=f"tbe.{event}_count", data_bytes=data.numel(), ) return data @torch.jit.ignore def _generate_vbe_metadata( self, offsets: Tensor, batch_size_per_feature_per_rank: Optional[List[List[int]]], ) -> invokers.lookup_args.VBEMetadata: return generate_vbe_metadata( offsets, batch_size_per_feature_per_rank, self.optimizer, self.pooling_mode, self.feature_dims, self.current_device, ) def forward( # noqa: C901 self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, feature_requires_grad: Optional[Tensor] = None, # 2D tensor of batch size for each rank and feature. # Shape (number of features, number of ranks) batch_size_per_feature_per_rank: Optional[List[List[int]]] = None, total_unique_indices: Optional[int] = None, ) -> Tensor: # Generate VBE metadata vbe_metadata = self._generate_vbe_metadata( offsets, batch_size_per_feature_per_rank ) (indices, offsets) = indices.long(), offsets.long() # Force casting per_sample_weights to float if per_sample_weights is not None: per_sample_weights = per_sample_weights.float() if self.bounds_check_mode_int != BoundsCheckMode.NONE.value: torch.ops.fbgemm.bounds_check_indices( self.rows_per_table, indices, offsets, self.bounds_check_mode_int, self.bounds_check_warning, per_sample_weights, B_offsets=vbe_metadata.B_offsets, max_B=vbe_metadata.max_B, ) if not is_torchdynamo_compiling(): # Mutations of nn.Module attr forces dynamo restart of Analysis which increases compilation time # Storing tensors for linear_cache_indices recomputation self._indices = indices self._offsets = offsets self._vbe_B_offsets = vbe_metadata.B_offsets self._vbe_max_B = vbe_metadata.max_B self.step += 1 self._report_io_size_count("fwd_input", indices) self._report_tbe_mem_usage() if len(self.timesteps_prefetched) == 0: # In forward, we don't enable multi-pass prefetch as we want the process # to be as fast as possible and memory usage doesn't matter (will be recycled # by dense fwd/bwd) self._prefetch( indices, offsets, vbe_metadata, multipass_prefetch_config=None ) if len(self.timesteps_prefetched) > 0: self.timesteps_prefetched.pop(0) self.lxu_cache_locations = ( self.lxu_cache_locations_empty if len(self.lxu_cache_locations_list) == 0 else self.lxu_cache_locations_list.pop(0) ) common_args = invokers.lookup_args.CommonArgs( placeholder_autograd_tensor=self.placeholder_autograd_tensor, dev_weights=self.weights_dev, host_weights=self.weights_host, uvm_weights=self.weights_uvm, lxu_cache_weights=self.lxu_cache_weights, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, D_offsets=self.D_offsets, total_D=self.total_D, max_D=self.max_D, hash_size_cumsum=self.hash_size_cumsum, total_hash_size_bits=self.total_hash_size_bits, indices=indices, offsets=offsets, pooling_mode=self.pooling_mode, indice_weights=per_sample_weights, feature_requires_grad=feature_requires_grad, lxu_cache_locations=self.lxu_cache_locations, # Pass the local_uvm_cache_stats bc only that information is # relevant for the current iteration uvm_cache_stats=( self.local_uvm_cache_stats if ( self.gather_uvm_cache_stats # Unique conflict misses are only collected when using CacheAlgorithm.LRU and self.cache_algorithm == CacheAlgorithm.LRU ) else None ), output_dtype=self.output_dtype, vbe_metadata=vbe_metadata, is_experimental=self.is_experimental, use_uniq_cache_locations_bwd=self.use_uniq_cache_locations_bwd, use_homogeneous_placements=self.use_homogeneous_placements, ) if self.optimizer == OptimType.NONE: assert ( total_unique_indices is not None and total_unique_indices <= indices.numel() ), f"OptimType.NONE requires total_unique_indices. Please pass it or check the value (total_unique_indices = {total_unique_indices})" return self._report_io_size_count( "fwd_output", invokers.lookup_none.invoke( common_args, self.optimizer_args, total_unique_indices ), ) elif self.optimizer == OptimType.EXACT_SGD: return self._report_io_size_count( "fwd_output", invokers.lookup_sgd.invoke(common_args, self.optimizer_args), ) momentum1 = invokers.lookup_args.Momentum( dev=self.momentum1_dev, host=self.momentum1_host, uvm=self.momentum1_uvm, offsets=self.momentum1_offsets, placements=self.momentum1_placements, ) if self.optimizer == OptimType.LARS_SGD: return self._report_io_size_count( "fwd_output", invokers.lookup_lars_sgd.invoke( common_args, self.optimizer_args, momentum1 ), ) if self.optimizer == OptimType.EXACT_ADAGRAD: return self._report_io_size_count( "fwd_output", invokers.lookup_adagrad.invoke( common_args, self.optimizer_args, momentum1 ), ) momentum2 = invokers.lookup_args.Momentum( dev=self.momentum2_dev, host=self.momentum2_host, uvm=self.momentum2_uvm, offsets=self.momentum2_offsets, placements=self.momentum2_placements, ) # Ensure iter is always on CPU so the increment doesn't synchronize. if not self.iter.is_cpu: self.iter = self.iter.cpu() self.iter[0] += 1 if self.optimizer == OptimType.ADAM: return self._report_io_size_count( "fwd_output", invokers.lookup_adam.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ), ) if self.optimizer == OptimType.PARTIAL_ROWWISE_ADAM: return self._report_io_size_count( "fwd_output", invokers.lookup_partial_rowwise_adam.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ), ) if self.optimizer == OptimType.LAMB: return self._report_io_size_count( "fwd_output", invokers.lookup_lamb.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ), ) if self.optimizer == OptimType.PARTIAL_ROWWISE_LAMB: return self._report_io_size_count( "fwd_output", invokers.lookup_partial_rowwise_lamb.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ), ) prev_iter = invokers.lookup_args.Momentum( dev=self.prev_iter_dev, host=self.prev_iter_host, uvm=self.prev_iter_uvm, offsets=self.prev_iter_offsets, placements=self.prev_iter_placements, ) row_counter = invokers.lookup_args.Momentum( dev=self.row_counter_dev, host=self.row_counter_host, uvm=self.row_counter_uvm, offsets=self.row_counter_offsets, placements=self.row_counter_placements, ) if self._used_rowwise_adagrad_with_counter: if ( self._max_counter_update_freq > 0 and self.iter.item() % self._max_counter_update_freq == 0 ): row_counter_dev = self.row_counter_dev.detach() if row_counter_dev.numel() > 0: self.max_counter[0] = torch.max(row_counter_dev).cpu().item() + 1 else: self.max_counter[0] = 1 if self.optimizer == OptimType.EXACT_ROWWISE_ADAGRAD: if self._used_rowwise_adagrad_with_counter: return self._report_io_size_count( "fwd_output", invokers.lookup_rowwise_adagrad_with_counter.invoke( common_args, self.optimizer_args, momentum1, prev_iter, row_counter, # pyre-fixme[6]: Expected `int` for 6th param but got `Union[float, int]`. self.iter.item(), self.max_counter.item(), ), ) else: return self._report_io_size_count( "fwd_output", invokers.lookup_rowwise_adagrad.invoke( common_args, self.optimizer_args, momentum1 ), ) raise ValueError(f"Invalid OptimType: {self.optimizer}") def reset_uvm_cache_stats(self) -> None: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." self.uvm_cache_stats.zero_() self.local_uvm_cache_stats.zero_() def get_uvm_cache_stats(self, use_local_cache: bool = False) -> Tensor: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." return self.local_uvm_cache_stats if use_local_cache else self.uvm_cache_stats def _get_uvm_cache_print_state(self, use_local_cache: bool = False) -> List[float]: snapshot = self.get_uvm_cache_stats(use_local_cache) if use_local_cache: return snapshot.tolist() # Stats are accumulated over multiple steps. Compute delta, and update state. delta = snapshot - self.last_uvm_cache_print_state self.last_uvm_cache_print_state = snapshot.clone() return delta.tolist() @torch.jit.ignore def print_uvm_cache_stats(self, use_local_cache: bool = False) -> None: # TODO: Create a separate reporter class to unify the stdlog reporting uvm_cache_stats: List[float] = self._get_uvm_cache_print_state(use_local_cache) N = max(1, uvm_cache_stats[0]) m = { "N_called": uvm_cache_stats[UVMCacheStatsIndex.num_calls], "requested_indices": uvm_cache_stats[ UVMCacheStatsIndex.num_requested_indices ] / N, "unique_indices": uvm_cache_stats[UVMCacheStatsIndex.num_unique_indices] / N, "unique_misses": uvm_cache_stats[UVMCacheStatsIndex.num_unique_misses] / N, "conflict_unique_misses": uvm_cache_stats[ UVMCacheStatsIndex.num_conflict_unique_misses ] / N, "conflict_misses": uvm_cache_stats[UVMCacheStatsIndex.num_conflict_misses] / N, } if uvm_cache_stats[1]: m.update( { "unique indices / requested indices": uvm_cache_stats[ UVMCacheStatsIndex.num_unique_indices ] / uvm_cache_stats[UVMCacheStatsIndex.num_requested_indices], "unique misses / requested indices": uvm_cache_stats[ UVMCacheStatsIndex.num_unique_misses ] / uvm_cache_stats[UVMCacheStatsIndex.num_requested_indices], } ) self.log(f"uvm_cache_stats={m}") @torch.jit.ignore def _report_uvm_cache_stats(self) -> None: if self.stats_reporter is None: return stats_reporter: TBEStatsReporter = self.stats_reporter passed_steps = self.step - self.last_reported_step if passed_steps == 0: return if not stats_reporter.should_report(self.step): return uvm_cache_stats: List[float] = self.get_uvm_cache_stats( use_local_cache=False ).tolist() self.last_reported_step = self.step if len(self.last_reported_uvm_stats) == 0: self.last_reported_uvm_stats = [0.0] * len(uvm_cache_stats) uvm_cache_stats_delta: List[float] = [0.0] * len(uvm_cache_stats) for i in range(len(uvm_cache_stats)): uvm_cache_stats_delta[i] = ( uvm_cache_stats[i] - self.last_reported_uvm_stats[i] ) self.last_reported_uvm_stats = uvm_cache_stats element_size = self.lxu_cache_weights.element_size() for stat_index in UVMCacheStatsIndex: stats_reporter.report_data_amount( iteration_step=self.step, event_name=f"tbe.prefetch.cache_stats_by_data_size.{stat_index.name.lower()}", data_bytes=int( uvm_cache_stats_delta[stat_index.value] * element_size * self.max_D_cache / passed_steps ), ) def prefetch( self, indices: Tensor, offsets: Tensor, forward_stream: Optional[torch.cuda.Stream] = None, batch_size_per_feature_per_rank: Optional[List[List[int]]] = None, ) -> None: if self.prefetch_stream is None and forward_stream is not None: self.prefetch_stream = torch.cuda.current_stream() assert ( self.prefetch_stream != forward_stream ), "prefetch_stream and forward_stream should not be the same stream" vbe_metadata = self._generate_vbe_metadata( offsets, batch_size_per_feature_per_rank ) self._prefetch( indices, offsets, vbe_metadata, multipass_prefetch_config=self.multipass_prefetch_config, ) if forward_stream is not None: self._prefetch_tensors_record_stream(forward_stream) def _prefetch( self, indices: Tensor, offsets: Tensor, vbe_metadata: Optional[invokers.lookup_args.VBEMetadata] = None, multipass_prefetch_config: Optional[MultiPassPrefetchConfig] = None, ) -> None: if not is_torchdynamo_compiling(): # Mutations of nn.Module attr forces dynamo restart of Analysis which increases compilation time self.timestep += 1 self.timesteps_prefetched.append(self.timestep) if not self.lxu_cache_weights.numel(): return # Clear the local_uvm_cache_stats before the prefetch instead of after # the prefetch step, since it will be used in the CommonArgs in the # forward step if self.gather_uvm_cache_stats: self.local_uvm_cache_stats.zero_() self._report_io_size_count("prefetch_input", indices) final_lxu_cache_locations = torch.empty_like(indices, dtype=torch.int32) for ( partial_indices, partial_lxu_cache_locations, base_offset, ) in self.get_prefetch_passes( multipass_prefetch_config, indices, final_lxu_cache_locations ): linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.cache_hash_size_cumsum, partial_indices, offsets, vbe_metadata.B_offsets if vbe_metadata is not None else None, vbe_metadata.max_B if vbe_metadata is not None else -1, base_offset, ) if ( self.record_cache_metrics.record_cache_miss_counter or self.record_cache_metrics.record_tablewise_cache_miss ): lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) if self.record_cache_metrics.record_cache_miss_counter: self._update_cache_miss_counter( lxu_cache_locations, linear_cache_indices ) if self.record_cache_metrics.record_tablewise_cache_miss: self._update_tablewise_cache_miss( lxu_cache_locations, linear_cache_indices, offsets ) if self.cache_algorithm == CacheAlgorithm.LRU: torch.ops.fbgemm.lru_cache_populate( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.timestep, self.lxu_state, self.stochastic_rounding, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, self.lock_cache_line, self.lxu_cache_locking_counter, ) elif self.cache_algorithm == CacheAlgorithm.LFU: torch.ops.fbgemm.lfu_cache_populate( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.lxu_state, self.stochastic_rounding, ) torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, lxu_cache_locations_output=partial_lxu_cache_locations, ) assert ( len(self.lxu_cache_locations_list) < self.max_prefetch_depth ), f"self.lxu_cache_locations_list has grown to size: {len(self.lxu_cache_locations_list)}, this exceeds the maximum: {self.max_prefetch_depth}. This probably indicates an error in logic where prefetch() is being called more frequently than forward()" self.lxu_cache_locations_list.append(final_lxu_cache_locations) if self.gather_uvm_cache_stats: # Accumulate local_uvm_cache_stats (int32) into uvm_cache_stats (int64). # We may want to do this accumulation atomically, but as it's only # for monitoring, slightly inaccurate result may be acceptable. self.uvm_cache_stats = torch.add( self.uvm_cache_stats, self.local_uvm_cache_stats ) self._report_uvm_cache_stats() if self.should_log(): self.print_uvm_cache_stats(use_local_cache=False) def should_log(self) -> bool: """Determines if we should log for this step, using exponentially decreasing frequency. Logs for steps: 100 200 ... 1,000 2,000 ... 10,000 20,000 ... 100,000 200,000 ... """ s = self.step + 1 # step starts at 0 return s >= 100 and s % (10 ** int(math.log10(s))) == 0 def _prefetch_tensors_record_stream( self, forward_stream: torch.cuda.Stream ) -> None: # Record the tensors created by prefetch stream and consumed by forward/backward # to the forward stream. In PyTorch, each backward CUDA op runs on the same # stream that was used for its corresponding forward op. for t in self.lxu_cache_locations_list: t.record_stream(forward_stream) def _update_cache_miss_counter( self, lxu_cache_locations: Tensor, linear_cache_indices: Tensor, ) -> None: CACHE_MISS = -1 CACHE_HIT = -2 cache_missed_locations = torch.where( lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT ) unique_ids_list = torch.unique(cache_missed_locations) unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1) miss_count = torch.sum(unique_ids_count_list) self.cache_miss_counter[0] += (miss_count > 0).to(torch.int64) self.cache_miss_counter[1] += miss_count def _update_tablewise_cache_miss( self, lxu_cache_locations: Tensor, linear_cache_indices: Tensor, offsets: Tensor, ) -> None: CACHE_MISS = -1 CACHE_HIT = -2 num_tables = len(self.cache_hash_size_cumsum) - 1 num_offsets_per_table = (len(offsets) - 1) // num_tables cache_missed_locations = torch.where( lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT ) for i in range(num_tables): start = offsets[i * num_offsets_per_table] end = offsets[(i + 1) * num_offsets_per_table] current_cache_missed_locations = cache_missed_locations[start:end] unique_ids_list = torch.unique(current_cache_missed_locations) unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1) miss_count = torch.sum(unique_ids_count_list) self.table_wise_cache_miss[i] += miss_count def init_embedding_weights_uniform(self, min_val: float, max_val: float) -> None: splits = self.split_embedding_weights() if self.weights_precision == SparseType.INT8: # TODO: add in-place FloatToFused8BitRowwiseQuantized conversion for emb in splits: assert ( len(emb.shape) == 2 ), "Int8 embedding only supported for 2D weight tensors." shape = [emb.shape[0], emb.shape[1] - self.int8_emb_row_dim_offset] tmp_emb = torch.zeros(shape, device=self.current_device) tmp_emb.uniform_(min_val, max_val) tmp_emb_i8 = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(tmp_emb) emb.data.copy_(tmp_emb_i8) else: for param in splits: param.uniform_(min_val, max_val) @torch.jit.ignore def split_embedding_weights(self) -> List[Tensor]: """ Returns a list of weights, split by table """ splits = [] for t, (rows, dim, _, _) in enumerate(self.embedding_specs): if self.weights_precision == SparseType.INT8: dim += self.int8_emb_row_dim_offset placement = self.weights_physical_placements[t] offset = self.weights_physical_offsets[t] if placement == EmbeddingLocation.DEVICE.value: weights = self.weights_dev elif placement == EmbeddingLocation.HOST.value: weights = self.weights_host else: weights = self.weights_uvm if weights.dim() == 2: weights = weights.flatten() splits.append( weights.detach()[offset : offset + rows * dim].view(rows, dim) ) return splits @torch.jit.ignore def get_optimizer_buffer(self, state: str) -> torch.Tensor: if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Getting optimizer buffer is not supported for {self.optimizer}" ) for name, buffer in self.named_buffers(): if name == state: return buffer return torch.tensor(0) @torch.jit.export def get_optimizer_state(self) -> List[Dict[str, torch.Tensor]]: r""" Get the optimizer state dict that matches the OSS Pytorch optims TODO: populate the supported list of optimizers """ split_optimizer_states = self.split_optimizer_states() if ( self.optimizer == OptimType.EXACT_ROWWISE_ADAGRAD or self.optimizer == OptimType.EXACT_ADAGRAD ): list_of_state_dict = [ ( {"sum": states[0], "prev_iter": states[1], "row_counter": states[2]} if self._used_rowwise_adagrad_with_counter else {"sum": states[0]} ) for states in split_optimizer_states ] elif self.optimizer == OptimType.SGD or self.optimizer == OptimType.EXACT_SGD: list_of_state_dict = [ {"momentum_buffer": states[0]} for states in split_optimizer_states ] elif ( self.optimizer == OptimType.ADAM or self.optimizer == OptimType.PARTIAL_ROWWISE_ADAM or self.optimizer == OptimType.LAMB or self.optimizer == OptimType.PARTIAL_ROWWISE_LAMB ): list_of_state_dict = [ {"exp_avg": states[0], "exp_avg_sq": states[1]} for states in split_optimizer_states ] else: raise NotImplementedError( f"Getting optimizer state {self.optimizer} is not implmeneted" ) return list_of_state_dict @torch.jit.ignore def split_optimizer_states( self, ) -> List[List[torch.Tensor]]: """ Returns a list of states, split by table """ if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Getting optimizer states is not supported for {self.optimizer}" ) def get_optimizer_states( state_dev: Tensor, state_host: Tensor, state_uvm: Tensor, state_offsets: Tensor, state_placements: Tensor, rowwise: bool, ) -> List[torch.Tensor]: splits = [] for t, (rows, dim, _, _) in enumerate(self.embedding_specs): offset = state_offsets[t] placement = state_placements[t] if placement == EmbeddingLocation.DEVICE: state = state_dev elif placement == EmbeddingLocation.HOST: state = state_host else: state = state_uvm if not rowwise: splits.append( state.detach()[offset : offset + rows * dim].view(rows, dim) ) else: splits.append(state.detach()[offset : offset + rows].view(rows)) return splits states: List[List[torch.Tensor]] = [] if self.optimizer not in (OptimType.EXACT_SGD,): states.append( get_optimizer_states( self.momentum1_dev, self.momentum1_host, self.momentum1_uvm, self.momentum1_physical_offsets, self.momentum1_physical_placements, rowwise=self.optimizer in [ OptimType.EXACT_ROWWISE_ADAGRAD, ], ) ) if self.optimizer in ( OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, ): states.append( get_optimizer_states( self.momentum2_dev, self.momentum2_host, self.momentum2_uvm, self.momentum2_physical_offsets, self.momentum2_physical_placements, rowwise=self.optimizer in (OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB), ) ) if self._used_rowwise_adagrad_with_counter: states.append( get_optimizer_states( self.prev_iter_dev, self.prev_iter_host, self.prev_iter_uvm, self.prev_iter_physical_offsets, self.prev_iter_physical_placements, rowwise=True, ) ) states.append( get_optimizer_states( self.row_counter_dev, self.row_counter_host, self.row_counter_uvm, self.row_counter_physical_offsets, self.row_counter_physical_placements, rowwise=True, ) ) return_states = [list(s) for s in zip(*states)] return return_states @torch.jit.export def set_learning_rate(self, lr: float) -> None: """ Sets the learning rate. """ if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Setting learning rate is not supported for {self.optimizer}" ) self._set_learning_rate(lr) @torch.jit.ignore def _set_learning_rate(self, lr: float) -> float: """ Helper function to script `set_learning_rate`. Note that returning None does not work. """ self.optimizer_args = self.optimizer_args._replace(learning_rate=lr) return 0.0 @torch.jit.export def set_optimizer_step(self, step: int) -> None: """ Sets the optimizer step. """ if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Setting optimizer step is not supported for {self.optimizer}" ) self.iter[0] = step @torch.jit.export def flush(self) -> None: if not self.lxu_cache_weights.numel(): return torch.ops.fbgemm.lxu_cache_flush( self.weights_uvm, self.cache_hash_size_cumsum, self.cache_index_table_map, self.weights_offsets, self.D_offsets, self.total_D, self.lxu_cache_state, self.lxu_cache_weights, self.stochastic_rounding, ) def _apply_split( self, split: SplitState, prefix: str, dtype: Type[torch.dtype], enforce_hbm: bool = False, make_dev_param: bool = False, dev_reshape: Optional[Tuple[int, ...]] = None, ) -> None: apply_split_helper( self.register_buffer, functools.partial(setattr, self), self.current_device, self.use_cpu, self.feature_table_map, split, prefix, dtype, enforce_hbm, make_dev_param, dev_reshape, self._uvm_tensors_log, ) def _apply_cache_state( self, cache_state: CacheState, cache_algorithm: CacheAlgorithm, cache_load_factor: float, cache_sets: int, cache_reserved_memory: float, dtype: torch.dtype, ) -> None: self.cache_algorithm = cache_algorithm self.timestep = 1 self.timesteps_prefetched = [] self.max_prefetch_depth = MAX_PREFETCH_DEPTH self.lxu_cache_locations_list = [] self.lxu_cache_locations_empty = torch.empty( 0, device=self.current_device, dtype=torch.int32 ).fill_(-1) self.lxu_cache_locations = self.lxu_cache_locations_empty self._indices = self.lxu_cache_locations_empty self._offsets = self.lxu_cache_locations_empty self._vbe_B_offsets = self.lxu_cache_locations_empty self._vbe_max_B = -1 self.prefetch_stream: Optional[torch.cuda.Stream] = None self._init_uvm_cache_stats() # NOTE: no cache for CPU mode! if cache_state.total_cache_hash_size == 0 or self.use_cpu: self.register_buffer( "lxu_cache_weights", torch.zeros(0, 0, device=self.current_device, dtype=dtype), ) # NOTE: make TorchScript work! self.register_buffer( "cache_hash_size_cumsum", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "total_cache_hash_size", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "cache_index_table_map", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_cache_state", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_state", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "cache_miss_counter", torch.tensor([0, 0], dtype=torch.int64), persistent=False, ) self._init_uvm_cache_counter(cache_sets, persistent=False) return assert cache_load_factor > 0 element_size = 2 if dtype == torch.float16 else 4 if cache_sets <= 0: total_memory = torch.cuda.get_device_properties( self.current_device ).total_memory free_memory = ( total_memory - torch.cuda.memory_reserved(self.current_device) - int(cache_reserved_memory) ) assert free_memory > 0 cache_sets = ( int(cache_state.total_cache_hash_size * cache_load_factor) + DEFAULT_ASSOC - 1 ) // DEFAULT_ASSOC cache_sets = 1 if cache_sets == 0 else cache_sets cache_size = cache_sets * DEFAULT_ASSOC * element_size * self.max_D_cache if cache_size > free_memory: cache_sets = ( int(1.0 * free_memory / self.max_D_cache / element_size) + DEFAULT_ASSOC - 1 ) // DEFAULT_ASSOC cache_load_factor = ( 1.0 * cache_sets * DEFAULT_ASSOC / int(cache_state.total_cache_hash_size) ) assert cache_sets > 0 if cache_algorithm == CacheAlgorithm.LFU: assert cache_sets < 2**24 - 1 cache_size = cache_sets * DEFAULT_ASSOC * element_size * self.max_D_cache self.log( f"Using on-device cache with admission algorithm " f"{cache_algorithm}, {cache_sets} sets, " f"load_factor: {cache_load_factor : .3f}, " f"cache_size: {cache_size / 1024.0 / 1024.0 / 1024.0 : .2f}GB, " f"cache_precision: {dtype}" ) self.total_cache_hash_size = cache_state.total_cache_hash_size self.register_buffer( "cache_hash_size_cumsum", torch.tensor( cache_state.cache_hash_size_cumsum, device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "cache_index_table_map", torch.tensor( cache_state.cache_index_table_map, device=self.current_device, dtype=torch.int32, ), ) self.register_buffer( "lxu_cache_state", torch.zeros( cache_sets, DEFAULT_ASSOC, device=self.current_device, dtype=torch.int64 ).fill_(-1), ) self.register_buffer( "lxu_cache_weights", torch.zeros( cache_sets * DEFAULT_ASSOC, self.max_D_cache, device=self.current_device, dtype=dtype, ), ) self.register_buffer( "lxu_state", torch.zeros( size=( (self.total_cache_hash_size + 1,) if cache_algorithm == CacheAlgorithm.LFU else (cache_sets, DEFAULT_ASSOC) ), device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "cache_miss_counter", torch.tensor([0, 0], device=self.current_device, dtype=torch.int64), ) self._init_uvm_cache_counter(cache_sets, persistent=True) if self.prefetch_pipeline: # using the placeholder_autograd_tensor to make sure # the hook is executed after the backward pass # not using register_module_full_backward_hook # due to https://github.com/pytorch/pytorch/issues/100528 self.placeholder_autograd_tensor.register_hook( self._sync_stream_post_backward ) self.register_full_backward_pre_hook( self._update_cache_counter_and_locations ) if cache_algorithm not in (CacheAlgorithm.LFU, CacheAlgorithm.LRU): raise ValueError( f"cache_algorithm must be {CacheAlgorithm.LRU} " f"or {CacheAlgorithm.LFU}" ) # pyre-ignore def _recording_to_timer( self, timer: Optional[AsyncSeriesTimer], **kwargs: Any ) -> Any: if self.stats_reporter is not None and self.stats_reporter.should_report( self.step ): assert ( timer ), "We shouldn't be here, async timer must have been initiated if reporter is present." return timer.recording(**kwargs) # No-Op context manager return contextlib.nullcontext() def _sync_stream_post_backward( self, grad: Tensor, ) -> None: """ backward hook function when prefetch_pipeline is enabled. With the pipeline, prefetch(batch_{i+2}) may overlap with backward(batch_{i}). There is race condition that backward(batch_i) writes to UVM memory and at the same time prefetch(batch_{i+2}) loads UVM memory to cache. This stream sync forces backward(batch_i) to finish before prefetch(batch_{i+2}). """ if self.prefetch_stream is not None: self.prefetch_stream.wait_stream(torch.cuda.current_stream()) def _update_cache_counter_and_locations( self, module: nn.Module, grad_input: Union[Tuple[Tensor, ...], Tensor], ) -> None: """ Backward prehook function when prefetch_pipeline is enabled. This function does 3 things: 1. backward stream waits for prefetch stream to finish. Otherwise the prefetch(batch_{i+1}) might overlap with backward(batch_i). If an idx is not in cache in batch_i, but it is being inserted in batch_{i+1}, there is race condition that backward(batch_i) writes to UVM memory and at the same time prefetch(batch_{i+1}) loads UVM memory to cache. 2. decrement the lxu_cache_locking_counter to indicate the current batch is finished. The lxu_cache_locking_counter is updated in both prefetch and TBE backward. As there is no overlap between prefetch and backward, we can decrement either before or after backward. It's better to decrement before lxu_cache_locations gets updated. 3. update lxu_cache_locations to address the cache inconsistency issue. In the case that the same index is not inserted into cache in batch_i, but it is inserted in batch_{i+1}, the cache can be invalid in the sense that the cached weight for this index does not have the backward update of batch_i. Example of the issue is as follows: idx is in batch_i, batch_{i+1} prefetch(batch_i) - failed to insert idx into cache, cache_locations_batch_i of idx is -1 (cache miss) forward(batch_i) prefetch(batch_{i+1}) - insert idx into cache, cache is loaded from host memory backward(batch_i) - cache_locations_batch_i of idx is -1, the host memory is updated forward(batch_{i+1}) - OUTPUT IS WRONG. the weight for idx is fetched from cache, but the cache is outdated. The fix to this cache inconsistency is to update the cache_locations_batch_i before backward of batch_i, so that the cache gets updated correctly by the backward pass of TBE. """ if self.prefetch_stream is not None: # need to wait for the prefetch of next batch, # so that cache states are valid with self._recording_to_timer( self.bwd_wait_prefetch_timer, context=self.step, stream=torch.cuda.current_stream(), ): torch.cuda.current_stream().wait_stream(self.prefetch_stream) torch.ops.fbgemm.lxu_cache_locking_counter_decrement( self.lxu_cache_locking_counter, self.lxu_cache_locations, ) # Recompute linear_cache_indices linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.cache_hash_size_cumsum, self._indices, self._offsets, self._vbe_B_offsets, self._vbe_max_B, ) ( linear_unique_indices, linear_unique_indices_length, _, ) = torch.ops.fbgemm.get_unique_indices( linear_cache_indices, self.total_cache_hash_size, compute_count=False, ) torch.ops.fbgemm.lxu_cache_lookup( linear_unique_indices, self.lxu_cache_state, self.total_cache_hash_size, gather_cache_stats=False, # not collecting cache stats num_uniq_cache_indices=linear_unique_indices_length, lxu_cache_locations_output=self.lxu_cache_locations, ) def _init_uvm_cache_counter(self, cache_sets: int, persistent: bool) -> None: if self.prefetch_pipeline and persistent: self.register_buffer( "lxu_cache_locking_counter", torch.zeros( cache_sets, DEFAULT_ASSOC, device=self.current_device, dtype=torch.int32, ), ) else: self.register_buffer( "lxu_cache_locking_counter", torch.zeros([0, 0], dtype=torch.int32, device=self.current_device), persistent=persistent, ) def _init_uvm_cache_stats(self) -> None: if not self.gather_uvm_cache_stats: # If uvm_cache_stats is not enabled, register stub entries via buffer to state_dict for TorchScript to JIT properly. # Since we're not using these variables, we can choose minimize tensor size to keep state_dict size small. self.register_buffer( "uvm_cache_stats", torch.zeros( 1, device=self.current_device, dtype=torch.int64, ), persistent=False, ) self.register_buffer( "local_uvm_cache_stats", torch.zeros( 1, device=self.current_device, dtype=torch.int32, ), persistent=False, ) else: self.register_buffer( "uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "local_uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int32, ), ) self.reset_uvm_cache_stats() self.last_uvm_cache_print_state = torch.zeros_like(self.uvm_cache_stats) def reset_cache_states(self) -> None: if not self.lxu_cache_weights.numel(): return self.lxu_cache_state.fill_(-1) self.lxu_state.fill_(0) self.timestep = 1 def reset_embedding_weight_momentum( self, pruned_indices: Tensor, pruned_indices_offsets: Tensor, logical_table_ids: Tensor, buffer_ids: Tensor, ) -> None: if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Resetting embedding weight momentum is not supported for {self.optimizer}" ) total_cache_hash_size = 0 if isinstance(self.total_cache_hash_size, Tensor): total_cache_hash_size = self.total_cache_hash_size.item() else: total_cache_hash_size = self.total_cache_hash_size rowwise = self.optimizer in [ OptimType.EXACT_ROWWISE_ADAGRAD, ] if rowwise: torch.ops.fbgemm.reset_weight_momentum( dev_weights=self.weights_dev, uvm_weights=self.weights_uvm, lxu_cache_weights=self.lxu_cache_weights, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, momentum1_dev=self.momentum1_dev, momentum1_uvm=self.momentum1_uvm, momentum1_placements=self.momentum1_placements, momentum1_offsets=self.momentum1_offsets, D_offsets=self.D_offsets, pruned_indices=pruned_indices.to(device=self.current_device), pruned_indices_offsets=pruned_indices_offsets.to( device=self.current_device ), logical_table_ids=logical_table_ids.to(device=self.current_device), buffer_ids=buffer_ids.to(device=self.current_device), cache_hash_size_cumsum=self.cache_hash_size_cumsum, lxu_cache_state=self.lxu_cache_state, total_cache_hash_size=total_cache_hash_size, )
class DenseTableBatchedEmbeddingBagsCodegen(nn.Module): """ Table-batched version of nn.EmbeddingBag(sparse=False) """ weights: Tensor weights_offsets: Tensor D_offsets: Tensor total_D: int max_D: int hash_size_cumsum: Tensor total_hash_size_bits: int embedding_specs: List[Tuple[int, int]] def __init__( self, embedding_specs: List[Tuple[int, int]], # tuple of (rows, dims) feature_table_map: Optional[List[int]] = None, # [T] weights_precision: SparseType = SparseType.FP32, pooling_mode: PoolingMode = PoolingMode.SUM, use_cpu: bool = False, output_dtype: SparseType = SparseType.FP32, use_mtia: bool = False, ) -> None: # noqa C901 # tuple of (rows, dims,) super(DenseTableBatchedEmbeddingBagsCodegen, self).__init__() self.pooling_mode = pooling_mode self.weights_precision = weights_precision self.output_dtype: int = output_dtype.as_int() table_embedding_dtype = weights_precision.as_dtype() self.use_cpu: bool = use_cpu self.use_mtia: bool = use_mtia assert not (use_cpu and use_mtia), "Cannot use CPU and MTIA at the same time" if self.use_cpu or self.pooling_mode == PoolingMode.NONE: assert output_dtype in [ SparseType.FP32, SparseType.FP16, SparseType.BF16, ], "Fused pooled embedding quantization only supported for cuda." # pyre-fixme[8]: Attribute has type `device`; used as `Union[int, device]`. self.current_device: torch.device = ( torch.device("cpu") if self.use_cpu else ( torch.device(f"mtia:{torch.mtia.current_device()}") if self.use_mtia else torch.cuda.current_device() ) ) self.embedding_specs = embedding_specs (rows, dims) = zip(*embedding_specs) T_ = len(self.embedding_specs) assert T_ > 0 feature_table_map = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(feature_table_map) assert T_ <= T feature_dims = [dims[t] for t in feature_table_map] D_offsets = [0] + list(accumulate(feature_dims)) self.total_D = D_offsets[-1] self.max_D = max(dims) self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) assert self.D_offsets.numel() == T + 1 # Required for VBE self.register_buffer( "feature_dims", torch.tensor(feature_dims, device="cpu", dtype=torch.int64), ) hash_size_cumsum = [0] + list(accumulate(rows)) if hash_size_cumsum[-1] == 0: self.total_hash_size_bits: int = 0 else: self.total_hash_size_bits: int = int(log2(float(hash_size_cumsum[-1])) + 1) # The last element is to easily access # of rows of each table by # hash_size_cumsum[t + 1] - hash_size_cumsum[t] hash_size_cumsum = [hash_size_cumsum[t] for t in feature_table_map] + [ hash_size_cumsum[-1] ] self.register_buffer( "hash_size_cumsum", torch.tensor( hash_size_cumsum, device=self.current_device, dtype=torch.int64 ), ) weights_offsets = [0] + list( accumulate([row * dim for (row, dim) in embedding_specs]) ) self.weights = nn.Parameter( torch.randn( weights_offsets[-1], device=self.current_device, dtype=table_embedding_dtype, ) ) for feature in range(T): t = feature_table_map[feature] row, dim = embedding_specs[t] if ( self.weights[weights_offsets[t] : weights_offsets[t + 1]].numel() != row * dim ): logging.info( f"row {row} dim {dim} feature {feature} t {t} {self.weights[weights_offsets[t] : weights_offsets[t + 1]].numel()}" ) assert ( self.weights[weights_offsets[t] : weights_offsets[t + 1]].numel() == row * dim ) assert self.hash_size_cumsum[feature] == sum( row for (row, _) in embedding_specs[:t] ) self.weights_physical_offsets: List[int] = weights_offsets weights_offsets = [weights_offsets[t] for t in feature_table_map] self.register_buffer( "weights_offsets", torch.tensor( weights_offsets, device=self.current_device, dtype=torch.int64 ), ) @torch.jit.ignore def _generate_vbe_metadata( self, offsets: Tensor, batch_size_per_feature_per_rank: Optional[List[List[int]]], ) -> invokers.lookup_args.VBEMetadata: return generate_vbe_metadata( offsets, batch_size_per_feature_per_rank, OptimType.NONE, self.pooling_mode, self.feature_dims, self.current_device, ) def forward( self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, feature_requires_grad: Optional[Tensor] = None, batch_size_per_feature_per_rank: Optional[List[List[int]]] = None, ) -> Tensor: # Generate VBE metadata vbe_metadata = self._generate_vbe_metadata( offsets, batch_size_per_feature_per_rank ) (indices, offsets) = indices.long(), offsets.long() # Force casting per_sample_weights to float if per_sample_weights is not None: per_sample_weights = per_sample_weights.float() return torch.ops.fbgemm.dense_embedding_codegen_lookup_function( dev_weights=self.weights, weights_offsets=self.weights_offsets, D_offsets=self.D_offsets, total_D=self.total_D, max_D=self.max_D, hash_size_cumsum=self.hash_size_cumsum, total_hash_size_bits=self.total_hash_size_bits, indices=indices, offsets=offsets, pooling_mode=self.pooling_mode, indice_weights=per_sample_weights, feature_requires_grad=feature_requires_grad, output_dtype=self.output_dtype, B_offsets=vbe_metadata.B_offsets, vbe_output_offsets_feature_rank=vbe_metadata.output_offsets_feature_rank, vbe_B_offsets_rank_per_feature=vbe_metadata.B_offsets_rank_per_feature, max_B=vbe_metadata.max_B, max_B_feature_rank=vbe_metadata.max_B_feature_rank, vbe_output_size=vbe_metadata.output_size, ) @torch.jit.export def split_embedding_weights(self) -> List[Tensor]: """ Returns a list of weights, split by table """ splits = [] for t, (rows, dim) in enumerate(self.embedding_specs): offset = self.weights_physical_offsets[t] splits.append( self.weights.detach()[offset : offset + rows * dim].view(rows, dim) ) return splits def init_embedding_weights_uniform(self, min_val: float, max_val: float) -> None: splits = self.split_embedding_weights() for param in splits: param.uniform_(min_val, max_val)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources